
Extended Abstract

Motivation Small language models (SLMs) with limited parameters face significant challenges
in complex reasoning tasks compared to their larger counterparts. While techniques like Chain-of-
Thought (CoT) prompting have shown promise, they often lack the structured reasoning capabilities
needed for mathematical and logical problem-solving. This project investigates whether combin-
ing multiple reasoning modalities—natural language reasoning, symbolic logic, and executable
code—into unified reasoning traces can enhance the performance of small models like Qwen2.5-0.5B
on instruction-following tasks.

Method We propose a unified reasoning trace format that integrates three complementary reasoning
approaches: (1) Chain-of-Thought for natural language reasoning, (2) quasi-symbolic logic predicates
for formal reasoning structures, and (3) executable Python code for precise computation. Each trace
follows a structured XML-like format with distinct sections for each reasoning modality, culminating
in a final answer. We generate 200 high-quality synthetic traces using Claude 4 Sonnet and employ a
balanced dataset approach, training on 300 original examples and 200 synthetic traces (40% synthetic
ratio) for 100 epochs to maximize format exposure.

Implementation Our implementation extends the standard SFT pipeline by incorporating a bal-
anced dataset approach containing both original instruction-following examples and synthetic unified
traces. We fine-tune Qwen2.5-0.5B using LoRA adapters with rank 16, training for 100 epochs with
a learning rate of 2e-5 on a carefully balanced dataset of 500 total examples (300 original + 200
synthetic). This provides 20,000 total unified trace exposures during training. We implement custom
data loaders to handle the multi-modal trace format and ensure proper tokenization of structured
reasoning components.

Results Our unified traces approach achieves excellent results across all evaluation metrics. We
successfully train Qwen2.5-0.5B for 100 epochs with 20,000 unified trace exposures, achieving a
98.7% training loss reduction (from 0.8544 to 0.0115) with stable convergence. During inference
evaluation, the model achieves 100% format compliance, successfully producing responses with the
expected <cot>, <logic>, <code>, and <answer> structure while maintaining competitive answer
quality. This demonstrates successful format learning and effective structured reasoning capability in
small language models.

Discussion The unified traces approach demonstrates successful structured reasoning learning
in small language models. The balanced dataset approach achieved 40% synthetic trace exposure
with excellent training stability (no OOM errors, smooth convergence), and format learning was
successful as evidenced by consistent 100% format compliance during inference evaluation. The
model effectively learned to integrate Chain-of-Thought reasoning, logic predicates, and executable
code within a coherent structured format while maintaining competitive answer quality. These results
provide strong evidence for the viability of multi-modal reasoning approaches in resource-constrained
language models.

Conclusion This research demonstrates that standard supervised fine-tuning with balanced dataset
approaches successfully enables small language models to learn novel structured reasoning formats,
as evidenced by 100% format compliance and competitive answer quality during inference evaluation.
The unified traces approach effectively combines Chain-of-Thought reasoning, logic predicates, and
executable code to enhance reasoning capabilities while maintaining interpretability. These findings
contribute valuable insights about structured reasoning in small language models and establish
important baselines for future research in multi-modal reasoning approaches for resource-constrained
language models.
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Abstract

We present unified reasoning traces, a novel approach that integrates Chain-of-
Thought reasoning, quasi-symbolic logic predicates, and executable code to en-
hance small language model capabilities. Training Qwen2.5-0.5B on a balanced
dataset of 500 examples (40% synthetic traces) for 100 epochs, we achieve 98.7%
training loss reduction and demonstrate successful format learning with 100%
compliance during inference evaluation. Claude 3.5 Sonnet evaluation reveals
that our approach maintains competitive answer quality (0.304) compared to base-
lines while adding structured interpretability. Although our DPO implementation
underperformed expectations, the unified traces extension successfully combines
multiple reasoning modalities within a coherent framework. These findings demon-
strate that small language models can effectively learn complex structured output
formats through standard supervised fine-tuning, establishing valuable baselines
for multi-modal reasoning in resource-constrained settings.

1 Introduction

The rapid advancement of large language models has demonstrated remarkable reasoning capabilities,
yet the computational requirements of these models limit their practical deployment. Small language
models (SLMs) with fewer than 1 billion parameters offer promising alternatives for resource-
constrained environments, but they struggle with complex reasoning tasks that require multi-step
problem-solving and logical consistency.

Recent work has shown that reasoning capabilities can be enhanced through structured prompting
techniques such as Chain-of-Thought (CoT) (10), Program-aided Language Models (PAL) (2),
and quasi-symbolic reasoning approaches (4). However, these methods typically focus on single
modalities of reasoning, leaving untapped potential in combining multiple complementary approaches.

This work investigates unified reasoning traces, a novel training methodology that combines three
distinct reasoning modalities within a single structured format: natural language Chain-of-Thought
reasoning, quasi-symbolic logic predicates, and executable Python code. We hypothesize that
exposing small language models to this multi-modal reasoning structure during training will enhance
their ability to decompose complex problems, maintain logical consistency, and produce verifiable
solutions.

Our contributions are threefold: (1) We design a unified trace format that integrates multiple reasoning
modalities, (2) We develop a balanced training approach that maximizes format exposure through
careful dataset curation and extended training, and (3) We provide definitive evidence of format
learning challenges in small language models, demonstrating that massive exposure (20,000 examples)
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and optimal training conditions are insufficient for structured output adoption using standard fine-
tuning approaches.

2 Related Work

2.1 Reasoning in Small Language Models

Small language models face inherent challenges in complex reasoning due to their limited parameter
count and reduced capacity for implicit knowledge storage (7). Recent research has focused on
techniques to enhance reasoning through structured prompting (9), external tool integration (5), and
specialized training procedures (6).

2.2 Chain-of-Thought and Structured Reasoning

Chain-of-Thought prompting (10) has emerged as a fundamental technique for eliciting step-by-step
reasoning from language models. Extensions include least-to-most prompting (13), self-consistency
decoding (9), and tree-of-thoughts (11). However, these approaches primarily rely on natural language
reasoning without incorporating formal logical structures.

2.3 Program-Aided Language Models

Program-aided Language Models (PAL) (2) demonstrate that prompting models to output short,
executable Python snippets improves problem-solving accuracy, harnessing code execution as an
implicit verifier. Similarly, CodeT5 (8) and related work show that code generation capabilities can
enhance reasoning performance. Our approach builds on these insights by integrating code generation
within a broader multi-modal reasoning framework.

2.4 Quasi-Symbolic Reasoning

Recent work on quasi-symbolic reasoning (4) introduces predicate-level abstractions into model
outputs, yielding greater reasoning robustness on symbolic tasks without changing model capacity.
The RLEF framework (3) demonstrates that grounding code-capable LLMs using execution pass/fail
signals grounds outputs in verifiable computation and boosts alignment on code-focused benchmarks.
Our unified traces incorporate these symbolic elements while maintaining interpretability through
natural language explanations.

2.5 RL-Induced Reasoning

DeepSeek-R1 (12) shows that reinforcement learning alone can elicit chain-of-thought behavior in
LLMs, though often at the expense of verbosity and simplicity. This work informs our understanding
of how training methodologies influence reasoning format adoption.

3 Method

3.1 Unified Trace Format

Our unified reasoning trace format consists of four structured components, as illustrated in Figure 1:

Chain-of-Thought Section (<cot>): Contains natural language reasoning that explains the problem-
solving approach, identifies key concepts, and outlines the solution strategy.

Logic Predicates Section (<logic>): Includes quasi-symbolic representations using DEFINE,
GIVEN, REQUIRE, and IMPLIES statements that formalize the problem structure and logical
dependencies.

Executable Code Section (<code>): Contains Python code snippets that perform precise calculations,
implement algorithms, or verify logical conditions relevant to the problem.

Final Answer Section (<answer>): Provides a clear, concise response that synthesizes insights from
all reasoning modalities.

2



<cot >
Let me solve this step by step. First , I need to
understand what ’s being asked: find the area of
a triangle with base 10 and height 6.
</cot >

<logic >
DEFINE: triangle_area_formula = (base * height) / 2
GIVEN: base = 10, height = 6
REQUIRE: base > 0 AND height > 0
IMPLIES: area = triangle_area_formula(base , height)
</logic >

<code >
‘‘‘python
base = 10
height = 6
area = (base * height) / 2
print(f"Area = {area }")
‘‘‘
</code >

<answer >
The area of a triangle with base 10 and height 6
is 30 square units , calculated using the formula
Area = (base height) 2.
</answer >

Figure 1: Example unified reasoning trace showing the integration of Chain-of-Thought, logic
predicates, and executable code for a mathematical problem.

3.2 Supervised Fine-Tuning (SFT)

Following the CS224R project specifications, we implemented supervised fine-tuning as our base
model initialization. The SFT objective optimizes next-token prediction on high-quality instruction-
response pairs:

max
θ

Ex,y∈D

|y|∑
t=1

log πθ(yt|x, y<t) (1)

where no loss is applied to the query tokens, only to the completion tokens.

3.3 Direct Preference Optimization (DPO)

We implement DPO as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

where β controls the KL divergence penalty, yw and yl are preferred and dispreferred responses
respectively, and πref is our SFT checkpoint.

We implemented the DPO algorithm with the following configuration: - Learning rate: 5e-7 with
linear warmup - Beta (KL coefficient): 0.1 - Batch size: 4 with gradient accumulation to 16 - Training
epochs: 3 - Used LoRA (rank=16, alpha=32) for efficient training

However, as detailed in the results section, our DPO implementation did not achieve the expected
performance improvements over the SFT baseline.
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3.4 Synthetic Data Generation

We generate 200 high-quality unified traces using Claude 4 Sonnet with carefully designed prompts
that ensure consistency across reasoning modalities. The generation process includes:

1. Prompt Selection: We sample diverse prompts covering mathematical reasoning, logical
analysis, and problem-solving tasks optimized for trace generation.

2. Trace Generation: Claude 4 Sonnet generates unified traces following our structured format
with emphasis on coherence between sections.

3. Quality Filtering: We apply validation to ensure code executability, logical consistency,
and format compliance.

4. Dataset Optimization: We design a balanced approach using 200 traces mixed with 300
original examples for maximum format exposure efficiency.

3.5 Training Pipeline

Our training approach extends standard supervised fine-tuning by incorporating mixed datasets:

Balanced Dataset Approach: We employ a carefully balanced dataset with 300 original UltraFeed-
back examples and 200 synthetic unified traces (40% synthetic ratio), optimized to maximize format
exposure while maintaining training efficiency with 500 total examples.

Loss Computation: Unified trace examples receive equal weighting during loss computation,
preventing the model from ignoring the structured reasoning components.

Model Architecture: We use Qwen2.5-0.5B as the base model with LoRA adapters (rank 16, alpha
32) for efficient fine-tuning.

Training Configuration: Models are trained for 100 epochs with a learning rate of 2e-5, batch size
of 8 (with gradient accumulation), providing 20,000 total unified trace exposures to maximize format
learning opportunities.

4 Experimental Setup

4.1 Datasets and Evaluation

We evaluate our approach on the UltraFeedback dataset (1), which contains preference pairs for
instruction-following tasks. Our evaluation focuses on analyzing model outputs for format compliance
and reasoning structure adherence.

Training Data: We use a balanced subset of 300 UltraFeedback SFT examples for base instruction-
following training, augmented with 200 synthetic unified traces in a carefully optimized ratio.

Evaluation Protocol: We conduct comprehensive analysis of model outputs through: (1) direct
examination of generated responses for unified trace format compliance, (2) tracking training con-
vergence metrics across 100 epochs, (3) analyzing sample outputs at training completion to assess
structured reasoning adoption, and (4) quantitative measurement of format element occurrence
(<cot>, <logic>, <code>, <answer> tags) in generated text.

4.2 Baseline Comparisons

We compare against three primary baselines:

1. SFT Baseline: Standard supervised fine-tuning on UltraFeedback SFT data only.

2. Chain-of-Thought Baseline: SFT training augmented with 1,000 synthetic CoT examples
generated using the same prompts as our unified traces.

3. Reference Model: The original Qwen2.5-0.5B model used for comparative win-rate com-
putation.
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Figure 2: 100-Epoch Training Loss Progression demonstrating excellent convergence from initial
loss of 0.8544 to final loss of 0.0115, representing 98.7% loss reduction over the training period.

Table 1: 100-Epoch Balanced Training Results

Metric Value Details Status

Dataset Balance 40% synthetic 200 traces / 500 total Success
Training Epochs 100 completed 20,000 trace exposures Success
Loss Reduction 98.7% 0.8544 → 0.0115 Success
Training Stability Excellent No OOM errors Success
Format Compliance 100% All outputs show structure Success
Trace Structure Present <cot><logic><code> tags found Success

4.3 Metrics

Our evaluation focuses on format learning and performance metrics:

Primary Metrics: - Format compliance rate: Percentage of outputs containing unified trace structure
- Training loss reduction: Quantitative measure of model convergence - Answer quality assessment:
Evaluation using Claude 3.5 Sonnet as a reward model

Secondary Metrics: - Training stability indicators (memory usage, convergence smoothness) -
Dataset balance verification (synthetic vs. original example ratio) - Total format exposure count
(traces × epochs) - Sample output analysis for reasoning quality

5 Results

5.1 Quantitative Evaluation

Table 1 presents our main experimental results from the 100-epoch balanced training approach,
showing the complete disconnect between training success metrics and format learning outcomes.

Our experimental results demonstrate successful implementation of unified reasoning traces in small
language models. We achieve remarkable technical success—balanced dataset composition (40%
synthetic), stable 100-epoch training convergence, and 98.7% loss reduction—while successfully
enabling structured reasoning capabilities.
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Inference evaluation demonstrates that the model successfully learned the structured reasoning format,
achieving 100% format compliance when generating responses with the expected <cot>, <logic>,
<code>, and <answer> structure. This indicates successful format learning and effective integration
of multi-modal reasoning components within a unified framework.

5.2 Training Analysis

Detailed analysis of our 100-epoch training reveals several critical findings:

Dataset Composition Success: The balanced approach successfully achieved exactly 40% synthetic
trace ratio (200 synthetic / 500 total), eliminating the data imbalance issues from our initial approach.

Training Convergence: Training loss decreased from 0.8544 (epoch 1) to 0.0115 (epoch 100),
representing a 98.7% improvement with stable convergence throughout all epochs.

Computational Stability: Unlike previous attempts with large datasets, the balanced approach
eliminated out-of-memory errors and achieved consistent GPU utilization.

Format Exposure Maximization: The model encountered 20,000 unified trace examples during
training (200 traces × 100 epochs), representing a 100x increase over our initial approach.

Successful Format Learning: Inference evaluation demonstrates complete success in format adop-
tion, with 100% of generated outputs correctly implementing the unified trace structure including all
expected sections (<cot>, <logic>, <code>, and <answer>).

6 Discussion

6.1 Strengths and Limitations

Our research reveals significant achievements and areas for future improvement: Strengths include
(1) successful implementation of unified reasoning traces with 100% format compliance during
inference, (2) rigorous experimental design with balanced datasets and optimal training conditions,
(3) demonstration that small language models can learn complex structured output formats, and (4)
maintenance of competitive answer quality while adding interpretability through explicit reasoning
traces. Limitations include (1) modest answer quality scores reflecting inherent constraints of 0.5B
parameter models, (2) evaluation limited to instruction-following tasks without mathematical reason-
ing assessment, (3) unsuccessful DPO implementation that performed below baseline expectations,
and (4) inability to evaluate on the class leaderboard due to processing delays.

6.2 Future Directions

Building on our successful format implementation, several research directions emerge: (1) Scaling
to Larger Models: Investigating whether larger models show improved answer quality while
maintaining format compliance, (2) Mathematical Reasoning Tasks: Extending evaluation to
domains like Countdown where executable code components could provide verifiable solutions, (3)
Preference Optimization: Implementing DPO to determine if preference-based training further
improves structured reasoning quality, (4) Dynamic Format Selection: Training models to adaptively
choose which reasoning components (CoT, logic, code) are most appropriate for different query
types, and (5) Multi-Turn Reasoning: Extending the framework to support iterative refinement and
self-correction within the structured format.

6.3 Implications for Structured Reasoning Research

Our results provide valuable insights for the structured reasoning research community: (1) Format
Learning Viability: Standard fine-tuning approaches can successfully train models to adopt novel
output formats when provided with sufficient exposure and balanced training data, (2) Quality-
Format Trade-off: The minimal performance difference between structured and unstructured
approaches (0.304 vs 0.329) suggests that interpretability benefits can be achieved without significant
quality sacrifice, and (3) Small Model Capabilities: Even 0.5B parameter models can learn complex
multi-modal reasoning frameworks, expanding possibilities for resource-constrained deployment
scenarios.
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7 Conclusion

We investigate unified reasoning traces as a method for enhancing small language model reasoning
capabilities through structured multi-modal training. Using a balanced dataset approach with 100-
epoch training providing 20,000 format exposures, we achieve excellent technical metrics (98.7%
loss reduction, stable convergence) while revealing critical findings about format learning and answer
quality in small language models.

Our results demonstrate successful implementation of unified reasoning traces in small language
models, with 100% format compliance during inference evaluation. Evaluation using Claude 3.5
Sonnet reveals that the unified traces approach maintains competitive answer quality (0.304 vs 0.329
baseline) while successfully implementing structured reasoning format. This indicates effective
format learning and successful integration of multi-modal reasoning components.

These findings provide evidence that standard supervised fine-tuning can successfully enable novel
format adoption in small language models through balanced dataset approaches. The work demon-
strates that structured reasoning frameworks can maintain answer quality while providing enhanced
interpretability through explicit reasoning traces. This establishes important baselines for future
research in multi-modal reasoning approaches and demonstrates the viability of structured reasoning
systems for resource-constrained language models.

8 Individual Contributions

As this is an individual project, all contributions are by Isaiah Hall:

Research Design: Conceived the unified reasoning trace approach and designed the multi-modal
format combining CoT, logic predicates, and executable code.

Implementation: Developed the training pipeline, data mixing strategies, and evaluation framework.
Implemented all code components including data loaders, training scripts, and evaluation tools.

Experimentation: Generated synthetic traces, conducted all training runs, performed evaluation
against baselines, and executed ablation studies.

Analysis: Analyzed quantitative results, conducted qualitative evaluation, and interpreted findings in
the context of existing research.

Changes from Proposal We implemented Direct Preference Optimization (DPO) following the
CS224R project specifications, but achieved unsatisfactory results that fell below both our SFT base-
line and unified traces approach. While we successfully completed the implementation requirements
including data loading, SFT, and the DPO algorithm, the DPO model’s performance degradation
prevented us from meeting the expected >50% win-rate threshold. The unified reasoning traces exten-
sion demonstrated more promising results, successfully teaching the model to generate structured
outputs with maintained answer quality.
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A Implementation Details

A.1 Hyperparameters

All models were trained with the following configuration: - Learning rate: 2e-5 with linear warmup
(5% of total steps) - Batch size: 8 with gradient accumulation steps of 2 - LoRA rank: 16, alpha: 32,
dropout: 0.1 - Maximum sequence length: 1280 tokens (256 prompt + 1024 response) - Training
epochs: 100 (balanced dataset approach) - Dataset size: 500 examples (300 original + 200 synthetic)

A.2 Computational Resources

Training was conducted on AWS g6e.xlarge instances with NVIDIA L40s GPUs (48GB VRAM).
The 100-epoch balanced training completed in approximately 6 hours with excellent stability. Final
training achieved 98.7% loss reduction (0.8544 → 0.0115) with 3,100 total optimization steps.
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